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to compare the performance of the Newton’s methods and the two modifications.

*Address for correspondence:
Olusesan Adeyemi Adelabu
Faculty of Science and Agriculture,
University of Fort Hare, Alice,
P.B. X1314, Eastern Cape, 5700,
South Africa
Cell: +27736521664,
E-mail:aolusesan@ufh.ac.za

INTRODUCTION

Optimization is essentially the art, science
and mathematics of choosing the best among a
given set of finite or infinite alternatives. Also,
optimization is an interdisciplinary subject cut-
ting through the boundaries of mathematics,
economics, engineering, natural science and
many other fields of human endeavor in which
decisions are made at several stages. The ulti-
mate goal of all such decisions is either to mini-
mize the effort required and inconveniences or
to maximize the desired benefit. Since the effort
required or the benefit desired in any practical
situation can be expressed as a function of cer-
tain decision variables, optimization can be de-
fined as the process of finding the conditions
that gives the maximum or minimum value of a
function. If a point x corresponds to the mini-
mum value of function f (x),  the same point also
corresponds to the maximum value of the nega-
tive of the function, – f (x).

Optimization can be taken to mean minimiza-
tion since the maximum of a function can be

found by seeking the minimum of the negative
of the same function. According to Gill and
Murray (1974), several methods have been de-
veloped for solving different types of optimiza-
tion problems, but the Newton’s and Quasi-New-
ton’s methods will be considered in this work.
The Newton’s and Quasi-Newton’s methods
have the following scheme of iteration (Gill and
Murray 1974)

)()]([= 1
1 kkkk xfxHxx  


 and

where H(x)  is the Hessian matrix, B (x) is the
update matrix and ak is the optimal step-length.
Major contributions in this area have been made
by Davidon, Fletcher, Goldfarb, Broyden, Pow-
ell and Shanno. The methods are suitable for
large scale problems because the amount of stor-
age required by the algorithm can be controlled
by the user (Jiang and Yan 2010).

 However, this study investigates the behav-
iour and performance of the methods with nu-
merical results.

Optimization Problems

An optimization problem can be a maximiza-
tion or a minimization problem stated as (Li and
Fukushima 2001):
find ),,,,(= 21 nxxxx   which minimizes

)(= xff
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 subject to the constraints
mixgi ,1,2,=0,=)( 

pjxh j ,1,2,=0,)( 
where the variable x  is an n-dimensional vector
called the decision vector or variable, f (x)  is the
objective function, gi (x)   and hj (x)  are respec-
tively refers to as the equality and inequality
constraints.

Design Variables

Any system is described by a set of quanti-
ties some of which are viewed as variables dur-
ing the design process and some of which are
preassigned parameter. All quantities that can
be treated as variables are called design or deci-
sion variables xi, i=1,2,...,n. They are collective-
ly represented as a design vector

Design Constraint

In practice, the design variable cannot be
selected arbitrarily but have to satisfy certain
requirements. These restriction that must be sat-
isfied are called design constraints (Yuan and
Byrd 1995). Design constraints may represent
limitations on the performance or behaviour of
the system or physical limitations (Yuan and Byrd
1995). For example, in an optimization problem
with only inequality constraint gi (x) <0, the set
of values of x that satisfy the equation gi (x) = 0,
form a hyper surface in the design space which
is called constraint surface.

Objective Function

The classical design procedure aims at find-
ing an acceptable design, a design which satis-
fies the contraints. In general, there are several
acceptable designs and the purpose of the opti-
mization is to single out the best possible de-
sign. Thus, a criterion has to be selected for
comparing different designs. When the criteri-
on is expressed as a function of the design vari-
able it is known as objective function. The ob-

jective function is in general specified by phys-
ical or economical consideration. However, the
selection of an objective function is not trivial
because what is the optimal with respect to a
certain criterion may be unacceptable with re-
spect to another criterion. Typically, there is a
trade off performance cost or performance-reli-
ability; hence the selection of the objective func-
tion is one of the most important decisions in
the whole design process.

Classification of Optimization Problem

Optimization problem can be classified in
several ways.

Classification Based on the Existence of
Constraints

Optimization problem can be classified as a
constrained or as an unconstrained one depend-
ing on whether it involves constraints or not
(Yuan and Byrd 1995).

Classification Based on the Nature of Design
Variables

Based on the nature of design variables en-
countered, optimization problems can be classi-
fied into two broad categories. First, the problem
is to find values to a set of design parameters that
makes some prescribed function of these param-
eters minimum subject to a certain constraints.
For example, the problem of minimum-weight de-
sign of a prismatic beam subject to a limitation on
the maximum deflection is stated as:

Find 







d
b

X =

 which minimizes
f (X) = plbd

 subject to the constraints
tip < max
b>0
d> 0

where p is the density and tip is the tip de-
flection of the beam. This problem is called pa-
rameter or static optimization problems. In the
second category, the objective is to find a set of
design parameters, which are all continuous func-
tions of some other parameter that minimizes an
objective function subject to a set of constraints.
If the cross sectional dimensions of the rectan-
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gular beam are allowed to vary along its length.
The optimization problem is stated as:

Find








)(
)(

=)(
td
tb

tX

 which minimize
dttdtbtXF )()(=)]([

1

0
ltmaxtip  ,0

Here, the design variables are functions of
the length parameter t. These types of problem,
where each design variable is a function of one
or more parameters, is known as a trajectory or
dynamics optimization problem.

Classification Based on the Physical Structure
of the Problem

This can be classified as optimal control and
non-optimal control problems

Optimal Control Problem

An optimal control (OC) problem is a mathe-
matical programming problem involving a num-
ber of stages, where each stage evolves from
the preceding stage in a prescribed manner. It is
usually described by two types of variables: the
control (design) and the state variables. The
control variables defines the system governing
the evolution of the system from one stage to
the next and the state variables describe the be-
havior or status of the system in any stage. The
problem is to find a set of control or design vari-
ables such that the total objective function (also
known as the performance index, PI) that is, over-
all the stages is minimized subject to a set of
constraints on the control and state variables.

The problem can be stated as: find X  which
minimizes

 subject to the constraints

where xi is the i th control, yi the i th state
variable and fi the contribution of the i th stage
to the total objective function: gj, hk  and qi are

function of xj, yk and xi and yi respectively, and l
is the total number of stages.

Classification Based on Nature of the Equations

Optimization problem can be classified as lin-
ear, quadratic polynomial, non-linear depending
upon the nature of the objective function and
the constraints. This classification is important
because computational methods are usually se-
lected on the basis of such a classification. that
is the nature of the function involved indicates
the type of solution procedure.

Classification Based on the Permissible
Values of the Design Variables

This depends on the values permitted for
the design variables. It can be classified as inte-
ger or real valued and deterministic or stochas-
tic. that is all the design variable are restricted to
take on only integer (discrete) values.

Classification Based on the Separability of the
Function

Optimization problems can be classified as
separable and non-separation programming
problems based on the separability of objective
and constraint functions.

Separable Programming Problem

A function f (x) is said to be separable if it
can be expressed as the sum of n single variable
functions,  f1(x1), f2(x2),...., fn(xn)

 the problem can be stated as find X which
minimize

 subject to

 where bj is a constant.

Classification Based on the Number of
Objective Function

Optimization problem can be classified as sin-
gle and multi-objective programming problems.
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Single Objective Programming Program can
be stated as find X which minimize f (x)  subject
to

 Multi-objective Programming Program can
be stated as find x which minimize fi(x), (f2(x),.....,
fk(x)   subject to

mixgi 1,2,....,=0,)( 
 where fi ,  f2,....., fk   denote the objective func-

tions to be minimize simultaneously.

METHODOLOGY

Some existing methods of solving optimiza-
tion problems include (Jiang and Yan 2010):

1. Analytical Method
2.  Penalty Function Method
3. Simplex Method
4. Lagrange Multiplier Method
5. Bracketing Method
6. Fibonacci Method
7. Golden Search Method
8. Gradient Method
9. Newton Method
10. Quasi-Newton method

Aim

The purpose of this project work is to inves-
tigate the behavior and performances as well as
compare and discuss the numerical results of
Newton’s method, Davidon Fletcher Powell and
Broyden Fletcher Goldfarb Shanno Methods.
Also, to compare the numerical computational
results of Newton’s methods and its modifica-
tions (Quasi-Newton’s methods).

Newton’s Methods for Optimization Problems

Newton’s method sometimes called Newton-
Raphson method is a root finding method which
uses first and second derivatives (Jiang and Yan
2010). Given a starting point, the researchers
construct a quadratic approximation to the ob-
jective function that matches the first and the
second derivative value at that point. The re-
searchers then minimize the approximate func-
tion instead of the original objective function.
The researchers then use minimizer of the ap-
proximate function as the starting point in the
next step and repeat the procedure iteratively.

One Dimensional Non-linear Optimization
Problems

Suppose, the researchers are confronted with
the problem of minimizing a function of a single
real variable x. The researchers assume that at
each measurement point xk and can calculate f
(xk), f ’(xk) and f”(xk). The researchers consider
the quadratic approximation of the function f (x)
at x=xk  using the Taylor’s Series Expansion
(Martinez 2000).

The researchers set the derivative of equa-
tion (2.1) equal to zero for the minimum of f (x),
they obtain

If xk represent an approximation to the mini-
mum of  f (x),  then (2.2) can be re-arranged to
obtain an improved approximation as

)(=))(( kkk xfxxxf 
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




Equation (2.3) is equivalent to using a qua-
dratic approximation for the function  f (x)  and
applying the necessary conditions. Thus, the
iterative process (2.3) can be assumed to have
converged when the derivative f ’ (xk+1) is close
to zero.

 where  is a small quantity.

Algorithm for Newton Method

 The Newton’s Method consists of the fol-
lowing steps :

1.  Select an initial point x0 and small value
epsilon set k=0
2.  Compute  f’ (xk) and f” (xk)

3.Calculate,                             Compute  f ’ (xk+1)

4.  If ,                        , terminate else,
5.  Set k = k+1;  go to Step 2.

Remarks

1.  Newton method requires both first and
second order derivatives of  f (x).

2.  If  f” (xk) = 0,   the Newton iterative meth-
od has a powerful convergence property known as
quadratic convergence.
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3.  If the starting point for the iterative pro-
cess is not close to the true solution x, then the
Newton iterative process might diverge.

Unconstrained Non-linear Multi-dimensional
Optimization Problems

The researchers consider again the quadrat-
ic approximation of the function f (x)   at  x=xk.
Using the tailor series expansion (Yuan and Byrd
1995).

 where H (xk)  is the matrix of second partial de-
rivatives known as Hessian Matrix of f  evaluat-
ed at the point xk

2f 2f 2f
x2

1 x1x2 x1xn

2f 2f 2f
x2x1 xnx2 x2xn

2f 2f 2f
xnx1 xnx2 x2

n

By setting the partial derivative of (2.5) equal
to zero for the maximum of )(xf ,

 For all j = 1,2,..., n The researchers obtain
0=))(()(= *

kkk xxxHxff 
 If H (xk) is non-singular, the researchers

obtain an improve approximation  = xk+1 from
(2.7) as

since higher-order terms have been neglected
from (2.5), the recursive formula (2.8) represent
Newton’s method.

Algorithm for Newton’s Method

1.  Select an initial point x0 and <10-6.
2.  Set  k=0.
3.  Compute f (xk) and H(xk)  and )( kxH , If ||

f (xk)||<  terminate, else, go to step 4.
4.  Update:

5.  Set  K=K+1,  go to step 3.

Remarks

1. The method requires both first and sec-
ond order derivative of  f (x).

2. It is sensitive at initial point.
3. Converges quadratically near the optimum.
4. If  f (x) is non-quadratic function, New-

ton’s method may sometimes diverge and
may converge to saddle point.

5. It requires storing of  f (xk)  and )( kxH .
6. It requires the inversion of the matrix

)( kxH  at each step.
7. It also requires the evaluation of the quan-

tity H (xk)-1  f (xk) at each step.
In the next section, two of the modifications

of the Newton’s method for optimization are
considered.

Modifications of Newton’s Method

Modification of Newton’s method considered
in this work is the Quasi-Newton method (Jiang
and Yan 2010).

Quasi-Newton Methods

This is a method of Modification of New-
ton’s method (Jiang and Yan 2010). The basic
idea behind this method is approximating the
Hessian matrix )( kxH  by another matrix )]([ kxA
or 1)]([ 

kxH  by another matrix )]([ kxB  of the iter-
ative process of Newtons method

)()]([= 1*
1 kkkkk xfxHxx  

 

Using  only  the first partial derivative of  f.
If 1)]([ 

kxH  is approximated by )]([ kxB , then
equation (3.1) can be expressed as

)()]([= *
1 kkkkk xfxBxx  

where k  is the optimal step length along
the direction
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Approximation of  the Inverse Hessian

Let ,....,, 210 BBB  be a successive approxi-
mations of the inverse 1)( 

kxH  of the Hessian
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and )( kxf  be kg . The researchers now de-
rive a condition that the approximation should
satisfy.

Suppose first that the Hessian matrix )( kxH
of the objective function f  is constant and in-
dependent of x . In other words, the objective
function is quadratic, with

)(=)( kk xAxH
 and for all x , where

T
kk xAxA )(=)(

 Then
)(= 11 kkkkk xxAgg   Let

kkk ggg  1=

kkk xxx  1=
 then (3.5) becomes

kkk xAg  =
The researchers start with a real symmetric

positive definite matrix B0. The researchers note
given k, the matrix [Ak]-1  satisfies.

kixgA iik  ,0=)( )()(
1

The researchers also impose the requirement
that the approximation Bk+1  of the Hessian satisfy

kixgB iik  ,0= )()(1

 Moving in n dimensions, the researchers
have

Equation (3.11) can be represented as
],....,,[=],....,,[ 1)((1)(0)1)((1)(0)   nnn xxxgggB

 and Ak satisfies

 and

Therefore,               if  is non-
singular, then ( Ak ) is uniquely determine after n
steps, via

The Rank One Correction Formula

 In the rank one correction formula, the cor-
rection term is symmetric and has the form

Tkk
k ZZa )()( where ka  and )( kZ .

The general formula for updating the matrix
][ kB  can be written as Tkk
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and hence, the name “rank one” correction
which is also called the single-rank symmetric
(SRS algorithm).

 To derive the rank one correction formula,
the researchers aim to find  ak  and Zk. the re-
searchers first consider  the condition

)()(
1 = kk

k xgB  ,   they have
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 where )(
)(

k

Tk gZ   is a scalar. Hence,

The Rank Two Update

 In rank two updates, the researchers take
the sum of two rank one update as

The researchers now show that (3.23) satis-
fy the Quasi-Newton condition of (3.10)

where )(
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Tk gZ   and )(

)(
2 k
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2
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(3.24), the researchers make a choice to satisfy
it.

 substituting (3.25) into (3.24), the research-
ers obtain the rank two update called Davidon
Flectcher Powell.
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Equation (2.) can also be expressed as
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Davidon Fletcher Powell Algorithms

Steps are:
1. Select an arbitrary initial point (0)x , a real

symmetric matrix B0  and 
2. Set k=0.
3. Compute )( kg , If |||| )( kg , terminate,
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    6.  Set k=k+1, go to steps 3.

Broyden Fletcher Goldfarb and Shanno
(BFGS) Update

The researchers use the concept of duality
to obtain the BFGs updates as they recall from
3.8 - 3.14 that the equation )()(1 = iik xgB  ,

ki 0 .  derived from )()( = iki xAg  ,
ki 0 . The researchers then formulated up-

date formula for the approximation to the inverse
of the Hessian matrix 1)( 

kA . The researchers
require 1kH  to satisfy

kixHg iki   ,0= )(1)(
Thus,the researchers interchange )(ix  and

)( ig  and KH  and kB . In particular, the BFGS
update for kH  corresponds to the DFP update
for kB .

Hence, the researchers start from DFP update
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Using the duality concept, the researchers
obtain an update equation for approximation Hk
of the Hessian
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To obtain the BFGS update for the approxi-
mation of the inverse hessian. The researchers
take the inverse Hk+1 to obtain

1

)()(

)()(

)()(

)()(1
11 )(=)(= 
 








kk

T
k

k
T
kkk

k
T
k

T
kk

kkk xHx
HxxH

xg
gg

HHB

To compute 1kB  by inverting the right-hand
side of (3.26), the researchers apply the Sher-
man-Morrison formula stated as

 where A  is a non-singular matrix and U and V are
column vector. The researchers obtain

BFGS Update Algorithm

Steps are (Li and Fukushima 2001):
1.  Select an arbitrary initial point (0)x  and a

nxn real symmetric matrix 0B  and
610=  .

2.  Set k=0.
3.  Compute )( kg , If |||| )( kg , Terminate;
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 8.  Set 1= kk , go to step 3.

RESULTS

Numerical Results

The researchers report the Numerical results
of the Newton’s Method (NM), Davidon Fletch-
er Powell (DFP) and Broyden Fletcher Goldfarb
Shanno (BFGS) in this section. The problems
solved are standard test functions based on
unconstrained optimization problems. The re-
sults of the experiments are summarized in the
tables where the algorithms of NM, DFP and
BFGS are implemented respectively.

The comparison of the performance of the
methods are also presented.

Example 1: Extended Trigonometric Function

Table 1 shows that Newton’s method con-
verges at third iterations considering four vari-
ables and the objective function is also reducing.

Table 2 shows that DFP method converges
at eight iterations considering four variables and
the objective function is also reducing.

Table 3 shows that BFGS method converges
at sixth iterations considering four variables and
the objective function is also reducing.

Example 2 : Hager Function

,1][1,1,1,...=),)((=)( 0

10

1=

xixxexpxfMinimize ii
i


 Table 4 shows that Newton’s method con-

verges at fifth iterations considering ten variables
and the objective function is also reducing.

 Table 5 shows that DFP method converges
at fourteen iterations considering ten variables
and the objective function is also reducing.

 Table 6 shows that BFGS method converg-
es at eight iterations considering ten variables
and the objective function is also reducing.

Example 3 : Quadratic QF2 Function

 The numerical results of the Newton’s meth-
od for Example 3 in Table 7 shows that Newton’s
method converges at sixth iterations consider-
ing ten variables and the objective function is
also reducing.

Table 8 depicts that DFP method converges
at twenty-one iterations considering ten variables
and the objective function is also reducing.

Table 9 shows that BFGS method does not
converges and terminate at seventh iterations
considering ten variables and the objective func-
tion values are irregular..

Example 4 : Quartc Function(CUTE)

].0,...,2.0[2.0,2.0,2=,1)(=)( 0
4

10

1=
xxxfMinimize i

i


 Table 10 shows that Newton’s method con-
verges at twelveth iterations considering ten
variables and the objective function is also
reducing.

 Table 11 indicates that DFP method converg-
es at second iterations considering ten variables
and the objective function is also reducing.

BFGS Method for Example 4

 Table 12 shows that BFGS method converg-
es at second iterations considering ten variables
and the objective function is also reducing.

 Table 13.1 shows that the value of objective
function for Newton’s method converges at sec-
ond iteration, DFP converges at seventh itera-
tions and BFGS converges at fifth iterations.

 Table 13.2 shows that the value of objective
function for Newton’s method converges at fourth
iteration, DFP converges at thirteenth iterations
and BFGS converges at seventh iterations .

 Table 13.3 shows that the value of objective
function for Newton’s method converges at sixth
iteration, DFP converges at twenty-one itera-
tions and BFGS converges at seventh iterations.

 Table 13.4 shows that the value of objective
function for Newton’s method converges at elev-
enth iteration, DFP converges at first iterations
and BFGS converges at first iterations.

DISCUSSION

It was observed from the computational nu-
merical result of Example 1 that Newton’s meth-
od converges faster and performs better with
less iteration, DFP has a low convergence rate
with more iterations and BFGS performs better
than DFP with less iterations. In Example 2, New-
ton’s method performs better, follow by BFGS
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and then DFP. In Example 3, Newton’s method
still performs better, DFP has a very low conver-
gence rate with more iterations while BFGS di-
verges at 6th iterations. Also in Example 4, DFP
and BFGS performs better with just one iteration
but newton’s method performs poorly with more
iterations.

Finally, the behaviour and performances of
NM, DFP and BFGS algorithm depends on the
nature of the objective function.

CONCLUSION

This paper presented the solution of nonlin-
ear unconstrained optimization problem using
the Newton’s method, DFP and BFGS and the
following observation were obtained:

1.  DFP was developed to eradicate the com-
putation of the inverse of the Hessian
thereby keeping the positive definiteness
of the approximate Hessian inverse.

Table 1: Extended trigonometric function: The Newton’s method

     k                       fk

 0.2000000000  0.2000000000  0.2000000000  0.2000000000  27.6778698800
 0.1055160013  0.1991396520  0.2893401672  0.3763019149  27.1634476800
 0.1069562346  0.1994316721  0.2890115884  0.3746123800  27.1633907800

Table 2: The numerical results of the DFP method for Example 1

       k                       fk

 0.2000000000  0.2000000000  0.2000000000  0.2000000000  27.6778698800
 0.1204550379  0.1962411452  0.2720272524  0.3478133597  27.1764965200
 0.1212910535  0.2067633012  0.2838112726  0.3489617117  27.1739117600
 0.1110658064  0.2005876461  0.2878116694  0.3765732707  27.1636353800
 0.1069859837  0.1993955673  0.2890661108  0.3746124666  27.1633908600
 0.1069559806  0.1994424114  0.2890246451  0.3746173398  27.1633907900
 0.1052934127  0.2261453371  0.3221888209  0.3746121142  27.1839062000
 0.1069566240  0.1994317490  0.2890114121  0.3746121142  27.1633907800

Table 3: The numerical results of the BFGS method for Example 1

       k                       fk

 0.2000000000  0.2000000000  0.2000000000  0.2000000000  27.6778698800
 0.1056307284  0.1955406303  0.2854505322  0.3753604340  27.1637019700
 0.1067621258  0.1993884909  0.2890649238  0.3744683505  27.1633914600
 0.1069591606  0.1994341937  0.2890059483  0.3746051425  27.1633908100
 0.1069603619  0.1994318498  0.2890081060  0.3746052126  27.1633908000
 0.1069565399  0.1994319409  0.2890112574  0.3746121053  27.1633907900

Table 4: Hager Function numerical results: The Newton’s method

    k                      

1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000
 0.2526714251  0.3452855039  0.4122236412  0.4660872106  0.5117174457  0.5515785075
 0.1627524339  0.2790301739  0.3609495810  0.4253343393  0.4787870510  0.5246785214
 0.1753197844  0.2835400506  0.3629267760  0.4263020738  0.4792930356  0.5249544142
 0.1758659486  0.2835716434  0.3629306788  0.4263027512  0.4792931783  0.5249544475

Table 4: The numerical results of the Newton’s method for Example 2 (contd…)

     k                       fk

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  4.7145401000
 0.5871236924  0.6192933373  0.6487362076  0.6759215712  0.2441202210
 0.5649901142  0.6009959294  0.6335683654  0.6633332581  0.2145827530
 0.5651446550  0.6010839344  0.6336189069  0.6633623321  0.2141315630
 0.5651446634  0.6010839368  0.6336189072  0.6633623324  0.2141308660
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Table 5: The numerical results of the DFP method for Example 2

      k                      

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000
 0.2520320401  0.3218650233  0.3754497557  0.4206237746  0.4604228840  0.4964040299
 0.1683311834  0.2814378064  0.3601413186  0.4222712062  0.4742864987  0.5193528516
 0.1772846235  0.2786857626  0.3585370696  0.4227416731  0.4764548452  0.5226910597
 0.1762492975  0.2841581938  0.3627157776  0.4260350762  0.4791306740  0.5248784026
 0.1761193130  0.2836283858  0.3630836241  0.4263740171  0.4792824897  0.5248825964
 0.1702242710  0.2823673037  0.3592033771  0.4249802759  0.4796527015  0.5264691152
 0.1699814321  0.2823160515  0.3590436354  0.4249224525  0.4796673386  0.5265337381
 0.1702250184  0.2823677170  0.3592054637  0.4249782675  0.4796513600  0.5264688989
 0.1742964897  0.2848842885  0.3541494564  0.4341058144  0.4826680833  0.5224650151
 0.1756993138  0.2837250123  0.3628284596  0.4261121486  0.4791420358  0.5247202558
 0.1758306001  0.2835915904  0.3628667940  0.4263058769  0.4792383296  0.5250262155
 0.1758439968  0.2835904773  0.3629156311  0.4262710582  0.4792797536  0.5249304879
 0.1758688707  0.2835702362  0.3629352640  0.4263015119  0.4792991893  0.5249460224

Table 5: The numerical results of the DFP method for Example 2 (contd..)

  k                       fk

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  4.7145401000
 0.5294921079  0.5602897398  0.5892155085  0.6165741805  0.2427247540
 0.5592868351  0.5952394006  0.6279915038  0.6581004486  0.2146198010
 0.5633209084  0.5995829221  0.6323413620  0.6622249759  0.2142696830
 0.5650964580  0.6010069293  0.6334702093  0.6631145707  0.2141322410
 0.5650324280  0.6009495207  0.6334777286  0.6632270271  0.2141311950
 0.5675180483  0.6040632691  0.6369268554  0.6369462083  0.2154729980
 0.5676195969  0.6041905780  0.6370678743  0.6370957258  0.2154726670
 0.5675179978  0.6040624789  0.6369249193  0.6369524391  0.2154723640
 0.5612161724  0.5999115674  0.6372876539  0.6541311494  0.2145980200
 0.5649508052  0.6009611918  0.6334690781  0.6633806887  0.2141312980
 0.5651578208  0.6009821313  0.6335369016  0.6633690997  0.2141309140
 0.5651331911  0.6010069891  0.6336191750  0.6633667513  0.2141308770
 0.5651440848  0.6010092481  0.6336247925  0.6633621237  0.2141308730

Table 6: The numerical results of the BFGS method for Example 2

   k                      

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000  1.0000000000
 0.2520320401  0.3218650233  0.3754497557  0.4206237746  0.4604228840  0.4964040299
 0.1683311835  0.2814378065  0.3601413187  0.4222712062  0.4742864987  0.5193528516
 0.1772846233  0.2786857626  0.3585370691  0.4227416732  0.4764548451  0.5226910596
 0.1762492973  0.2841581941  0.3627157771  0.4260350761  0.4791306740  0.5248784026
 0.1761193130  0.2836283861  0.3630836243  0.4263740167  0.4792824896  0.5248825964
 0.1758711812  0.2835753062  0.3629202964  0.4263153520  0.4792980733  0.5249493756
 0.1758689590  0.2835713036  0.3629307853  0.4263030799  0.4792940156  0.5249555260

Table 6: The numerical results of the BFGS method for Example 2 (contd…)

 k                       fk

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  4.7145401000
 0.5294921079  0.5602897398  0.5892155085  0.6165741805  0.2427247540
 0.5592868350  0.5952394005  0.6279915037  0.6581004485  0.2146198030
 0.5633209081  0.5995829227  0.6323413616  0.6622249756  0.2142696850
 0.5650946581  0.6010069298  0.6334702093  0.6631145703  0.2141322400
 0.5650324283  0.6009495203  0.6334777287  0.6632270270  0.2141311850
 0.5651370509  0.6010805838  0.6336229082  0.6633730208  0.2141308630
 0.5651459428  0.6010853209  0.6336201937  0.6633633168  0.2141308710
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Table 6: The numerical results of the BFGS method for Example 2 (contd…)

 k                       fk

 1.0000000000  1.0000000000  1.0000000000  1.0000000000  4.7145401000
 0.5294921079  0.5602897398  0.5892155085  0.6165741805  0.2427247540
 0.5592868350  0.5952394005  0.6279915037  0.6581004485  0.2146198030
 0.5633209081  0.5995829227  0.6323413616  0.6622249756  0.2142696850
 0.5650946581  0.6010069298  0.6334702093  0.6631145703  0.2141322400
 0.5650324283  0.6009495203  0.6334777287  0.6632270270  0.2141311850
 0.5651370509  0.6010805838  0.6336229082  0.6633730208  0.2141308630
 0.5651459428  0.6010853209  0.6336201937  0.6633633168  0.2141308710

Table 7: Quadratic QF2 function results: The Newton’s method

   k                                      

 0.5000000000 0.5000000000 0.5000000000 0.5000000000 0.5000000000 0.5000000000
-1.0000000000 -1.0000000000 -1.0000000000 -1 .000000000 -1.0000000000 -1.0000000000
-1.0000000000 -1.0000000000 -1.0000000000 -1 .000000000 -1.0000000000 -1.0000000000
-1.0000000000 -1.0000000000 -1.0000000000 -1 .000000000 -1.0000000000 -1.0000000000
-1.0000000000 -1.0000000000 -1.0000000000 -1 .000000000 -1.0000000000 -1.0000000000
-1.0000000000 -1.0000000000 -1.0000000000 -1 .000000000 -1.0000000000 -1.0000000000

Table 7: The numerical results of the Newton’s method for Example 3 (contd…)

     k                             fk

 0.5000000000  0.5000000000  0.5000000000  0.5000000000  14.9687500000
 -1.0000000000  -1.0000000000  -1.0000000000  -1.2000000000  2.1680000000
 -1.0000000000  -1.0000000000  -1.0000000000  -1.0259036140  1.0396734340
 -1.0000000000  -1.0000000000  -1.0000000000  -0.9777734889  0.9874354592
 -1.0000000000  -1.0000000000  -1.0000000000  -0.9740167497  0.9871707736
 -1.0000000000  -1.0000000000  -1.0000000000  -0.9739943540  0.9871707643

Table 8: The numerical results of the DFP method for Example 3

 k                                      

 0.5000000000  0.5000000000  0.5000000000  0.5000000000  0.5000000000  0.5000000000
 0.3474637443  0.1949274887  0.0423912330  -0.1101450226 -0.2626812783 -0.4152175339
 0.3608059450  0.2174661699  0.0685464909  -0.0858908899 -0.2442873854 -0.4035880223

 -0.0998934335  -0.5733705184  -0.8478373212  -0.8889935058 -0.7368793302 -0.5265856627
 -0.1546243247  -0.6685247509  -0.9575834156  -0.9851787747 -0.7980453466 -0.5450182250
 -0.5657402525  -1.1801200890  -1.0276997110  -0.8803303471 -1.0753294380 -1.0016473150
 -0.6647962879  -1.1218939450  -1.0198239020  -0.9823904609 -1.0264617610 -1.0585498310
 -0.6739293004  -0.9798662991  -0.9884384091  -1.0400928570 -1.0382253780 -1.0360457970
 -0.6721114152  -0.8918412415  -0.9831647128  -1.0377766720 -1.0907370290 -1.0741897360
 -0.6779442421  -0.7782808955  -1.0761542780  -0.9353472967 -1.0212945240  -0.9865736045
 -0.7457470733  -0.8074374043  -0.9703081505  -1.0053485070 -0.9161641634 -1.0104070850
 -0.8322563557  -0.8375906439  -0.9065271381  -1.0224654730 -0.9627863194 -0.9492305072
 -1.0800642680  -0.8559941983  -0.9233649445  -1.0037315670 -0.9666725184 -0.9761162411
 -0.9603601368  -0.9881113201  -0.9864522350  -0.9957541261 -1.0031139820 -1.0143433340
 -1.0223405160  -1.0016757510  -1.0033678980  -1.0068077030 -1.0019197420 -1.0052394570
 -1.0010528520  -1.0001332170   -0.9997535100 -0.9985660424 -1.0005684640 -0.9976098620
 -1.0000260780  -0.9998219153  -1.0005022110  -1.0000802800 -0.9996064566 -0.9997526262
 -1.0002063490  -1.0001046120  -0.9999437789  -0.9999374522 -0.9999646884 -1.0000124080
 -1.0000156260  -0.9999808721  -0.9999956688  -1.0000195630 -1.0000200110 -1.0000087030
 -0.9999997861  -0.9999961959  -0.9999987256  -0.9999984477 -0.9999980525 -1.0000009730
 -0.9999992665  -1.0000003300  -0.9999996920  -1.0000003340 -0.9999998487 -0.9999998655
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Table 9: The numerical results of the BFGS method for Example 3

 k                                      

 0.5000000000  0.5000000000  0.5000000000  0.5000000000  0.5000000000  0.5000000000
 0.3474637443  0.1949274887  0.0423912330  -0.1101450226 -0.2626812783 -0.4152175339
 0.4886845863  0.4334886986  0.3192321855  0.1465734246 -0.0679906793 -0.2921246909
 0.1568125629  -0.2622527873  -0.7003166565  -0.9748244184 -0.9225479603 -0.6530707801
 0.1974262137  -0.2232684829  -0.6481975545  -0.8151537101 -0.7852498322 -0.6383650504

 -0.3104254072  -1.0892767380  -1.6944841040  -1.0694826350 -0.9284010795 -1.2330861560
 -0.2701634763  -0.8970325643  -1.9686565530  -1.1601076100 -1.0073273070 -1.3916062550

Table 9: The numerical results of the BFGS method for Example 3 (contd…)

 k                             fk

 0.5000000000  0.5000000000  0.5000000000  0.5000000000  14.9687500000
 -0.5677537900  -0.7202900450  -0.8728263010  -1.2287442310  14.2969853400
 -0.4776546489  -0.5605680618  -0.4610139095  0.9857111250  14.8357695400
 -0.4881598402  -0.4105607808  -0.1103472429  0.3862736893  15.1993068100
 -0.5029229781  -0.4429235171  -0.0764954112  0.4758432537  15.0162460700
 -0.6985117769  -0.2424946061   -0.5656686270  0.0162412793  14.8859353900
 -0.5384481189  -0.1492258759  -0.7068143033  -0.2176190549  27.2134277900

Table 10: Quartc Function (CUTE): The Newton’s method

  k                                        

 2.0000000000  2.0000000000  2.0000000000  2.0000000000  2.0000000000  2.0000000000
 1.6666666670  1.6666666670  1.6666666670  1.6666666670  1.6666666670  1.6666666670
 1.4444444450  1.4444444450  1.4444444450  1.4444444450  1.4444444450  1.4444444450
 1.2962962970  1.2962962970  1.2962962970  1.2962962970  1.2962962970  1.2962962970
 1.1975308650  1.1975308650  1.1975308650  1.1975308650  1.1975308650  1.1975308650
 1.1316872430  1.1316872430  1.1316872430  1.1316872430  1.1316872430  1.1316872430
 1.0877914950  1.0877914950  1.0877914950  1.0877914950  1.0877914950  1.0877914950
 1.0585276630  1.0585276630  1.0585276630  1.0585276630  1.0585276630  1.0585276630
 1.0390184420  1.0390184420  1.0390184420  1.0390184420  1.0390184420  1.0390184420
 1.0260122950  1.0260122950  1.0260122950  1.0260122950  1.0260122950  1.0260122950
 1.0173415300  1.0173415300  1.0173415300  1.0173415300  1.0173415300  1.0173415300
 1.0115610200  1.0115610200  1.0115610200  1.0115610200  1.0115610200  1.0115610200

Table 8: The numerical results of the DFP method for Example 3 (contd…)

 k                             fk

0.5000000000  0.5000000000  0.5000000000  0.5000000000  14.9687500000
-0.5677537900  -0.7202900450  -0.8728263010  -1.2287442310  14.2969853400

 -0.5592414430  -0.7051999016  -0.8339192707  -1.0195278900  13.1639494400
 -0.4620036585  -0.7165330886  -1.2578834540  -1.0273270970  8.9169499870
 -0.4547080598  -0.7225419690  -1.2931456870  -1.0293081160  8.8029024100
 -0.8112220478  -1.0248814620  -1.2816879940  -1.0283058270  3.8755340170
 -1.0762871970  -1.0247958220  -1.2375289080  -1.0287735740  2.6930310780
 -1.0402298720  -1.1052037460  -1.2054908130  -1.0265161100  2.3810825180
 -1.0251563520  -1.0551586470  -1.1900817300  -1.0238711920  2.2425860240
 -1.0339937970  -1.0161667230  -1.1453840460  -1.0004450060  1.8362548120
 -0.9934322106  -0.9790557034  -1.1140658310  -0.9813301813  1.5481525870
 -1.0163519400  -1.0163519400  -1.1020099320  -0.9740713274  1.4443837870
 -1.0189597860  -1.0338055390  -1.0823089370  -0.9631215203  1.2810724530
 -1.0051828320  -1.0250678060  -1.0031331780  -0.9539882156  1.0126768390
 -0.9994828273  -1.0052816610  -0.9987617971  -0.9622647979  0.9920007111
 -0.9988590833  -1.0012045900  -0.9998844943  -0.9730196375  0.9873206759
 -1.0001199810  -1.0003034510  -0.9999244205   -0.9740710793  0.9871766272
 -1.0000533050  -1.0000763030  -0.9999408113  -0.9740521798  0.9871712155
 -0.9999850669  -1.0000220500  -0.9999915075  -0.9740119490  0.9871707922
 -0.9999984100  -0.9999997134  -0.9999986367  -0.9739942934  0.9871707645
 -0.9999999133  -0.9999999438  -0.9999996406  -0.9739943068  0.9871707643
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2.  The BFGS was developed when the posi-
tive definiteness is not satisfied.

3.  The DFP and BFGS solutions agreed strong-
ly with the solutions obtained by Newton’s
method.

RECOMMENDATIONS

The researchers recommend that further stud-
ies be carried out on class of constrained opti-
mization problems.
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Table  13: Table of comparison of the objective
functio ns

Table 13.1: Table of comparison for Example 1

             NM             DFP          BFGS

 0.1069562 0.1069566 0.1069565
 0.1994317 0.1994317 0.1994319
 0.2890116 0.2890114 0.2890113
 0.3746124 0.3746121 0.3746121
f 27.163391 27.163391 27.163391
k 2 7 5

Table 13.2: Table of comparison for Example 2

             NM             DFP          BFGS

 0.1758659 0.1758689 0.175869
 0.2835716 0.2835702 0.2835713
 0.3629307 0.3629353 0.3629308
 0.4263028 0.4263015 0.4263031
 0.4792932 0.4792992 0.479294
 0.5249544 0.524946 0.5249555
 0.5651447 0.5651441 0.5651459
 0.6010839 0.6010092 0.6010853
 0.6336189 0.6336248 0.6336202
 0.6633623 0.6633621 0.6633633
f* 0.2141309 0.2141309 0.2141309
k 4 1 3 7

Table 13.3: Table of comparison for Example 3

             NM             DFP          BFGS

 -1 -0 .9999993 -0 .2701635
 -1 -1 .0000003 -0 .8970326
 -1 -0 .9999997 -1 .9686566
 -1 -1 .0000003 -1 .1601076
 -1 -0 .9999998 -1 .0073273
 -1 -0 .9999999 -1 .3916063
 -1 -0 .9999999 -0 .5384481
 -1 -0 .9999999 -0 .1492259
 -1 -0 .9999996 -0 .7068143
 -0 .9739944 -0 .9739943 -0 .2176191
 0.9871708 0.9871708 27.213428
f* 0.9871708 0.9871708 27.213428
k 6 2 1 7

Table 13.3: Table of comparison for Example 3

             NM             DFP          BFGS

 -1 -0 .9999993 -0 .2701635
 -1 -1 .0000003 -0 .8970326
 -1 -0 .9999997 -1 .9686566
 -1 -1 .0000003 -1 .1601076
 -1 -0 .9999998 -1 .0073273
 -1 -0 .9999999 -1 .3916063
 -1 -0 .9999999 -0 .5384481
 -1 -0 .9999999 -0 .1492259
 -1 -0 .9999996 -0 .7068143
 -0 .9739944 -0 .9739943 -0 .2176191
 0.9871708 0.9871708 27.213428
f* 0.9871708 0.9871708 27.213428
k 6 2 1 7




